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Abstract

The problem of a uniax j ally stressed plate of finite width
containing a centrally located "damage zone" is considered. It is
assumed that the flaw may be represented by a part-through crack
perpendicular to the plate surface, the net ligaments in the plane
of the crack and through-the-thickness narrow strips ahead of the
crack ends are fully yielded, @and in the yielded sections the ma-
terial may carry only a constant normal traction with magnitude
cqua! to the yield strength. The problem is solved by neglecting
the bending effects and the crack opening stretches at the center
and the ends of the crack are obtained. Some applications of the
results are indicated by using the concepts of critical crack open-
ing stretch and constant slope plastic instability.

1. INTRODUCTION

In this paper we reconsider the problem of an infinite strip
or a long plate of finite width with a symmetrically located crack
perpendicular to the boundaries (Figure 1l). The elasticity problem
for this geometry has been considered before in various publications
(e.g.,[1-4}). 1In a configuration such as the cracked strip, unless
the material is extremely "brittle" (in the sense that it may rupture
without undergoing appreciable inelastic deformations around the
crack tips), for crack lengths of the order of the width of net lig-
aments it is clear .nat the elasticity solution may not be adequate
either to describe the stress and deformation states in the strip or
as a prediction tool in the related fracture study. On the other
han”® under "plane stress" conditions if the material undergoes

plastic deformations with the plastic zone size around the crack

(*)Tr.is work was supported by NASA-Laugley under the Grant NGR39-
007-001 and by the National Science Foundation under the Grant
GK-42771X.
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tips of the order of crack length, there is at least a certain school
of thought adhering to the notion that the concepts of the crack
opening stretch or the plastic instability may be used for fracture
characterization of the material.

Aside from the verification of the validity of these concepts
and the experimental determination of the related strength parameter
for a given material, in applications one of the important problems
is, of course, analytically finding a reasonable estimate of the
crack opening stretch or the value of the external load at plastic
instability. Even though there is no widely accepted standardiza-
tion, the strength parameter of the material, the so-called criti-
cal crack opening stretch, is defined as the relative displacement
measured at the crack tip at the onset of rupture (through, for
example, photographically recorded diamond indentation marks).

As for the quantity representing the severity of the external
loads, ever since the publication of Dugdale's work on the subject
[5), the crack opening displacement calculated at the crack tip by
using the conventional plastic strip model has been considered to
be quite adequate.

In this paper we will mainly be interested in studying the
effect of crack length-to-plate width ratio, a/h on the plastic
zone size and the crack opening displacement, § in plates of finite
width. It will be assumed that the plate has either a symetrically
located through crack or a "damage zone" which may be represented
by a part-through crack (igure 1). In considering the part-through
crack problem the bending effects will be neglected and it will
further be assumed that the net ligaments connecting the part-through

crack to the plate surfaces as well as a narrow through the thick-



ness strip in the plane and zhead of the crack is fully yielded
(shaded area in Figure 1 b). After calculating 6 as a function
of a/h and the applied load, one may estimate the load carrying
capacity of the plate based on a criterion of critical crack open-
ing stretch or plastic instability. Such estimates are also given

in the paper.

2. FORMULATION OF THE PROBLEM

The problem is solved by usirg the standard superposition
technique and the method described in [3]). 1In [3] it was shown
that the plane elastostatics problen ot an infinite strip -h<x<h,
-o<y<®, containing a crack along -a<x<a, y=0 may be formulated in

terms of t*e following integral equation:

a h}
Algsrk e lemats - £25 px), (-a<x<a) (1)
where
Gix)= z2v(x,+0), (-a<x<a) (2)

is the crack surface displacement (in y-direction),

p(x)= —oyy(x,o) ’ 0=oxy(x,0) ,» (-a x a) (3)

are the crack surface tractions which are assumed to be the only
external loads acting on the strip,pu and k(k= 3-4v for plane strain,
k= (3+)/(1+v) for the generalized plane stress, v being the Poisson's

ratio) are the elastic constants, and the kernel k (x,t) is given by

k(x,t)= f: K(x,t,s)e” (P Hgg, "
K(x,t,s)= e-hs{-[l+(3+2hs)e_2hs]cosh(xs)
-2xse—2hssinh (xs) - [2xs sinh (xs)
+(3-2hs+e M8 cosh (xs)] [1-2s(h-t)1}/(1
+4hse2hS_m4hs)

(5)



The index of the singular integral equation (1) is +1, hence its
solution is determinate within one arbitrary constant which is
determined from the followi'g single—valuedness condition:

12 6(x)ax=0 (6)

Once the density function G(x) is determined all the desired field
quantities in the problem may be expressed in terms of definite in-
tegrals with G as the density and the related Green's functions as
the kernels.

Referring to Figure 1 let 2h be the width of the plate, 2a and
b the "equivalent" dimensions of the part-throuch crack representing
the initial damage zone, bo the plate thickness, ap - a the size of
the plastic zone in the plane of the crack, and %% the uniform ten-
sile stress acting on the plate away from the crack region. It will
be assumed that in addition to the "narrow strips" of length ap- a
in the plane and ahead of the internal crack, the net ligaments
connecting the crack to the plate surfaces are also fully yielded.
Thus, the yielded zones are shown in ¥ igure 1 as the shaded regions.
In formulating the problem it will be assumed that the damage zone
can be approximated by a rectangular part-through crack of dimen-
sions 2a and b with sides parallel and perpendicular to the plate
surfaces, and the bending effects arising from the nonsymmetric
orientation and shape of the part-through crack is negligible. The
solution of the problem may then be obtained by the superposition
of solutions of the following three problems:

Problem A: No crack; external load:

oyy(X.+°°)= i



Problem B: Crack: —ap<x<ap, y=0;

external load: 0yy(x,0)=-p(x)=-oo,(-ap<x<ap);
Problem C: Crack: -ap<x<ap, y=0;

external load: oyy(x,0)=-p(x)=oY
-b

(x,0)=-p(x)=oYEQ4

for a<})xlka o]
bxl<a,, oy, 2
0

for -a<x«a.

Here the dimensions bo' h, b, a Figure 1), the external load o_,
and the yield strength OY are known. The fictitious crack length
2ap is unknown and is determined from the condition of finiteness
of stress state at the crack tips $ap.

Note that the problem has a symmetry in loading and geometry
with respect to y axis and the Problem A has no contribution to
the stress singularities. Therefore, the condition giving ap nay

be expressed as

kB+kc=0 (7)

where kB and kC are the stress intensity factors at ap obtained
from the solutions of Problems B and C, respectively and may be
expressed in terms of the unknown density function G(x) as follows:

k= 42 lim /2(a 3 ) 6500, (3=B,0). (8)

] x+a
If we define the following dimensionless parameters

A=a/h, Ap=ap/h, (9)

equasion (7) may be written as

kB+kC=coKB(Ap)-och(Xp,A)=0. (10)

The problem is solved simply in an inverse manner, i.e., for a fixed

A A is varied, KB and K, are found (for unit loads) from (1) and

p’ C
(8) , the corresponding load ratio oo/oY is found from (10), and then



the curves giving (a/ap)=(A/Ap) Vs oro/oY are prepared with Ap as
a2 parameter.

After determining the density function

G (x) =Gy (X) +G (x) (11)
The crack surface displacement may be evaluated from

v(x,+0)= -&aPG(x)dx. (12)
From (12) the crack opening stretches of physical interest, i.e.,
that at the actual crack tip x=a, and at the center x=0 may be
obtained as

§=v(a,+0)-v(a,-0)= -2f:P G (x)dx, (13)

§,=v(0,+0)-v (0,-0)= -2/ PG (x)dx. (14)

3. THE RESULTS

The calculated results which are shown in F igures 2-11 are ob-
tained for three values of relative area of the part-through crack,
namely (b/bo)=0.5, 0.75, and 1 (i.e., through crack). F igures 2-4
give the information to obtain the plastic zone size or ap for a
given load ratio co/oY and crack length, a. For Ap=1 the crack

plane is fully yielded and we have
o
L -b a _,_ b 2, (15)

giving the straight lines shown in the figures. The value of
Ap=(ap/h )=0 corresponds to the infinite plane for which in the
case of through crack (b=b_) we have ** igure 4)

a O
—=cos ( ). (16)
ap 73%

The crack opening stretch § calculated at the crack tip x=a

(see equation 13) is shown in F igures 5-7. The normalization



factor d used in these figures is given by

d=1+k 9_a= 49Ya (plane stress). (17)
E

2u
In the figures X=a/h is used as the parameter. The value A=0 again
corresponds to the infinite plane for which in the case of through

crack we have ( igure 7)

— Too
TTlog (cos 20Y). (18)

The asymptotic values of the § curves indicated in the figures are

e

the load ratios corresponding to the fully-yielded net section and

are given by

fe1- ‘g—x. (19)
Y o

Note that in limit when A=l the (§/d) vs (co/oY) curve reduce to
the straight line (oo/oY)= l-b/bo shown in the figures.

In the case of a part-through crack, from the view point of
applications a more important quantity is the crack opening stratch
60 calculated at x=0, i.e., the maximum stretcn. Figures 8 and 9
show this quantity for (b/bo)= 0.5 and 0.75, respectively. The
asymptotic values of these 60 curves too are given by (19).

If one adopts a critical crack opening stretch criterion for

rupture then the load-carrying capacity of the plate may be obtained

from

6max= Gcr. (20)
where Gmax is the measure of the intensity of the applied load with
dmax=°o for the part-through crack and Gmax=6 for the through crack.

Figure 10 shows the load-carrying capacity of the plate with a

through crack for values of critical crack opening stretch

0.1 < (Gcr/d) 2 ®, Note that for constant § the derivative of



o, Vs A=a/h curve is negative, meaning that, according to this
criterion the rupture process is unstable. Figure 10 is obtained
from the calculated results giving Figqure 7. For a plate with a
part-through crack similar curves giving the load-carrying capacity
may be obtained from Figures 8 and 9. The straight .ine shown in
Figure 10 corresponds to the fully-yielded net section. In this
case, since the material is assumed to have no strain-hardening,
the corresponding value of the crack opening stretch is very large
(theoretically, infinite).

It should ke pointed out that the results found in this paper
for plates with finite width are similar to those found in shells,
A=a/h playing the role of the shell parameter A=[12(1—v2)]l/t

.(a//isg) (with R the radius of curvature, b  the thickness).
(see for example [6,7]). 1In studying the burst phenomenon in
cylindrical shells, it was observed that one may also use the value
cf § corresponding to a standard slope in §/d vs 00/0Y piot rather
than a fixed value of § itself as the representative of the inten-
sity of the applied loads [8]. The rational here being that, as

_ seen from F igures 5-%, after reaching a certain value any further
increase in the applied load may cause very large increases in the
crack opening stretch which may be interpreted as the onset of
"necking" process, hence plastic instability. F igure 1l shows the
load-carrying capacity of a plate with a through crack obtained by
using this concept for various standard slopes.

Finally it should be emphasized that in the model used in this
paper the effect of the strain hardening has not been taken into

account. Hence, in applications Oy of this paper should be con-



sidered as a "flow stress" rather than the standard 0.2 percent

offset yield strength »f the material. The value of the flow

stress ¢ may be selected as either o=(o

9,)/2 or o= (1 + a)o

Y + Y

where o, is the standard yield strength; o4 the ultimate strength

Y

and a a fixed parameter, 0<a<(ou - UY)/Oy.
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Fig. 1. Strip and crack geometry.
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critical crack opening stretch criterion (A=a/h).



Fig.1ll. Load carrying capacity of a cracked piate based on

constant slope - plastic instability (A= a/h).



